Публикации

Подпишитесь сейчас и получите код купона -50.

Paste the Mailchimp shortcode here.

Флуоресцентный микроскоп – система строящаяся на базе прямого или инвертированного микроскопа проходящего света с добавлением флуоресцентного модуля отраженного света. Флуоресцентные микроскопы универсальны, в большинстве случаев могут быть использованы как микроскопы для работы в видимом проходящем свете. В статье рассмотрены основы формирования флуоресцентного изображения, конструкция флуоресцентных микроскопов, объективы для флуоресценции и специальные высокочувствительные камеры.

Флуоресцентная микроскопия. Основы формирования флуоресцентного изображения.

Флуоресценция – физическое явление, заключающееся в поглощении кванта света веществом, способным флуоресцировать (флуорофором), с последующим быстрым испусканем другого кванта, со свойствами, отличными от исходного. По сути явление флуоресенции представляет из себя переход электронов по энергетическим уровням вещества. Энергия, получаемая атомом вещества при облучении делится на две части. Меньшая расходуется на релаксацию, а большая уходит на излучение фотона определенной энергии. Спектр флуоресценции сдвинут относительно спектра поглощения в сторону длинных волн.

Стоксов сдвиг. Спектр испускания находится в более длинноволновом диапазоне чем спектр поглощения. Статья

Это явление получило название «Стоксов сдвиг». Его причиной являются безызлучательные релаксационные процессы. В результате часть энергии поглощенного фотона теряется, а испускаемый фотон имеет меньшую энергию, и, соответственно, большую длину волны. Рассмотрим, каким образом испускание и поглощение света реализовано во флуоресцентном микроскопе.

Флуоресцентный микроскоп. Ход лучей при флуоресцентных исследованиях. Конструкция флуоресцентных фильтр-блоков.

Флуоресцентный микроскоп строится на базе прямого или инвертированного лабораторного микроскопа добавлением флуоресцентных модулей: осветителя отраженного света, туррели флуоресцентных фильтр-кубов, специального источника света, и, опционально, план полу апохроматическими объективами (флуотарами), с расширенной спектральной пропускной характеристикой.

Флуоресцентный микроскоп обладает следующим ходом лучей. На рисунке приведена схема прямого микроскопа, в инвертированном микроскопе схема полностью аналогична, только зеркально отражена сверху вниз.

Флуоресцентный микроскоп. Ход лучей прямого флуоресцентного микроскопа
Ход лучей прямого флуоресцентного микроскопа

Из спектра, испускаемого флуоресцентным источником света, вырезается полоса возбуждения необходимой ширины. (На примере это синее возбуждение, около 450 нм). Возбуждающий луч отражается от дихроичного зеркала и попадает на образец через объектив. Дихроичное зеркало отражает лучи до определенной длины волны (в данном случае до 460 нм), и пропускает лучи с большей длинной волны. В образце флуорофоры поглощают возбуждающий синий свет, и испускают более длинноволновое излучение. Флуоресцентное свечение беспрепятственно проходит через дихроичное зеркало, а барьерный фильтр вырезает нам необходимый для изучения спектр. Его необходимость заключается в том, что иногда флуоресцентное свечение находится в очень широком диапазоне длин волн, что мешает исследователю установить природу и свойства интересующего образца.

Флуоресцентный фильтр блок – устройство, объединяющее в себе дихроичное зеркало и два фильтра. Обычно в флуоресцентный микроскоп устанавливается несколько фильтров, способных возбуждать флуоресценцию в различном спектре. В зависимости от флуоресцентных меток или красителей, нанесенных на образец, картина в каждом канале будет отличной. Ядерный материал клетки будет наблюдаться в одном канале, митохондрии в другом, а цитоплазма в третьем. Ни один метод контрастирования не может дать такое радикальное деление образца с малым контрастом.

Флуоресцентный фильтр блок. (флуоресцентный куб), конструкция и спектральная характеристика.
Флуоресцентный фильтр блок. (флуоресцентный куб), конструкция и спектральная характеристика.

На рисунке изображен флуоресцентный фильтр блок (часто встречается название флуоресцентный куб) U-MWB2, производства компании Olympus, и его спектральная характеристика. Возбуждение 460-490 нм, дихроик 500 нм и эмиссия (или барьерный фильтр) 520+ нм. Это означает, что фильтр широкополосный, и позволяет наблюдать одновременно различный окрас разных флуоресцентных меток.

Осветители для флуоресцентной микроскопии.

Флуоресцентный осветитель должен обладать самым главным свойством: высокая пиковая мощность в каждой интересующей нас зоне спектра, включая ультрафиолет. Распространенными флуоресцентными источниками являются ртутные дуговые лампы HBO, металлогалоидные лампы, ксеноновые источники, лазеры и светодиоды. Рассмотрим подробно преимущества и недостатки источников

Ртутные лампы HBO

Самым распространенным осветителем является ртутная лампа HBO. Она используется как в рутинных лабораторных микроскопах, так и в высококачественных исследовательских системах. Это очень удобный и относительно недорогой осветитель, обладающий высокой мощностью.

Спектральная интенсивность ртутной лампы HBO 100
Спектральная интенсивность ртутной лампы HBO 100

К недостаткам можно отнести лишь необходимость центровки лампы при установке для отдачи полной мощности, а также относительно короткий срок службы – от 100 до 300 часов в зависимости от модели. После этого срока спектр лампы меняется, уровень мощности падает. Лампу всегда необходимо менять точно в срок.

Оставить комментарий

Ваш электронный адрес не будет опубликован.

Корзина пуста.